Exercise 6

Use the separation of variables to solve the Laplace equation

$$
u_{x x}+u_{y y}=0, \quad 0 \leq x \leq a, 0 \leq y \leq b,
$$

with $u(0, y)=0=u(a, y)$ for $0 \leq y \leq b$, and $u(x, 0)=f(x)$ for $0<x<a ; u(x, b)=0$ for $0 \leq x \leq a$.

Solution

The PDE and the boundary conditions are linear and homogeneous, which means that the method of separation of variables can be applied. Assume a product solution of the form, $u(x, y)=X(x) Y(y)$, and substitute it into the PDE and boundary conditions:

$$
\begin{gather*}
X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)=0 \quad \rightarrow \quad \frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(y)}{Y(y)}=k . \tag{1.6.1}\\
u(0, y)=0 \quad \rightarrow \quad X(0) Y(y)=0 \quad \rightarrow \quad X(0)=0 \\
u(a, y)=0 \quad \rightarrow \quad X(a) Y(y)=0 \quad \rightarrow \quad X(a)=0 \\
u(x, b)=0 \quad \rightarrow \quad X(x) Y(b)=0 \quad \rightarrow \quad Y(b)=0
\end{gather*}
$$

The left side of equation (1.6.1) is a function of x, and the right side is a function of y. Therefore, both sides must be equal to a constant. Values of this constant and the corresponding functions that satisfy the boundary conditions are known as eigenvalues and eigenfunctions, respectively. We have to examine three special cases: the case where the eigenvalues are positive $\left(k=\mu^{2}\right)$, the case where the eigenvalue is zero $(k=0)$, and the case where the eigenvalues are negative $\left(k=-\lambda^{2}\right)$. The solution to the PDE will be a linear combination of all product solutions. Note that it doesn't matter what side of equation (1.6.1) the minus sign is placed so long as all eigenvalues are accounted for.

Case I: Consider the Positive Eigenvalues $\left(k=\mu^{2}\right)$

Solving the ordinary differential equation in (1.6.1) for $X(x)$ gives

$$
\begin{aligned}
X^{\prime \prime}(x) & =\mu^{2} X(x), \quad X(0)=0, X(a)=0 . \\
X(x) & =C_{1} \cosh \mu x+C_{2} \sinh \mu x \\
X(0) & =C_{1} \quad \rightarrow \quad C_{1}=0 \\
X(a) & =C_{2} \sinh \mu a=0 \quad \rightarrow \quad C_{2}=0 \\
X(x) & =0
\end{aligned}
$$

Positive values of k lead to the trivial solution, $X(x)=0$. Therefore, there are no positive eigenvalues and no associated product solutions.

Case II: Consider the Zero Eigenvalue $(k=0)$
Solving the ordinary differential equation in (1.6.1) for $X(x)$ gives

$$
X^{\prime \prime}(x)=0, \quad X(0)=0, X(a)=0 .
$$

$$
\begin{aligned}
& X(x)=C_{1} x+C_{2} \\
& X(0)=C_{2} \quad \rightarrow \quad C_{2}=0 \\
& X(a)=C_{1} a=0 \quad \rightarrow \quad C_{1}=0 \\
& X(x)=0
\end{aligned}
$$

$k=0$ leads to the trivial solution, $X(x)=0$. Therefore, zero is not an eigenvalue, and there's no product solution associated with it.

Case III: Consider the Negative Eigenvalues $\left(k=-\lambda^{2}\right)$
Solving the ordinary differential equation in (1.6.1) for $X(x)$ gives

$$
\begin{aligned}
& \quad X^{\prime \prime}(x)=-\lambda^{2} X(x), \quad X(0)=0, X(a)=0 . \\
& X(x)=C_{1} \cos \lambda x+C_{2} \sin \lambda x \\
& X(0)=C_{1} \quad \rightarrow \quad C_{1}=0 \\
& X(a)=C_{2} \sin \lambda a=0 \\
& \sin \lambda a=0 \quad \rightarrow \quad \lambda a=n \pi, n=1,2, \ldots \\
& X(x)=C_{2} \sin \lambda x
\end{aligned} \quad \lambda_{n}=\frac{n \pi}{a}, n=1,2, \ldots .
$$

The eigenvalues are $k=-\lambda_{n}^{2}=-\left(\frac{n \pi}{a}\right)^{2}$, and the corresponding eigenfunctions are $X_{n}(x)=\sin \frac{n \pi x}{a}$. Solving the ordinary differential equation for $Y(y), Y^{\prime \prime}(y)=\lambda^{2} Y(y)$, with $Y(b)=0$ gives $Y(y)=C_{3} \sinh \lambda(b-y)$. The product solutions associated with the negative eigenvalues are thus $u_{n}(x, y)=X_{n}(x) Y_{n}(y)=\sinh \frac{n \pi(b-y)}{a} \sin \frac{n \pi x}{a}$ for $n=1,2, \ldots$.

According to the principle of superposition, the solution to the PDE is a linear combination of all product solutions:

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi(b-y)}{a} \sin \frac{n \pi x}{a}
$$

The coefficients, B_{n}, are determined from the nonzero boundary condition,

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi b}{a} \sin \frac{n \pi x}{a}=f(x) . \tag{1.6.2}
\end{equation*}
$$

To determine B_{n}, multiply both sides of equation (1.6.2) by $\sin \frac{m \pi x}{a}$ and integrate both sides with respect to x from 0 to a. (m is a positive integer.)

$$
\begin{aligned}
\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi b}{a} \sin \frac{n \pi x}{a} \sin \frac{m \pi x}{a} & =f(x) \sin \frac{m \pi x}{a} \\
\int_{0}^{a} \sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi b}{a} \sin \frac{n \pi x}{a} \sin \frac{m \pi x}{a} d x & =\int_{0}^{a} f(x) \sin \frac{m \pi x}{a} d x \\
\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi b}{a} \underbrace{\int_{0}^{a} \sin \frac{n \pi x}{a} \sin \frac{m \pi x}{a} d x}_{=\frac{a}{2} \delta_{n m}} & =\int_{0}^{a} f(x) \sin \frac{m \pi x}{a} d x
\end{aligned}
$$

$$
\begin{gathered}
B_{n} \sinh \frac{n \pi b}{a}\left(\frac{a}{2}\right)=\int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x \\
B_{n}=\frac{2}{a \sinh \frac{n \pi b}{a}} \int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x
\end{gathered}
$$

It is thanks to the orthogonality of the trigonometric functions that most terms in the infinite series vanish upon integration. Only the $n=m$ term remains, and this is denoted by the Kronecker delta function,

$$
\delta_{n m}=\left\{\begin{array}{ll}
0 & n \neq m \\
1 & n=m
\end{array} .\right.
$$

